首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  国内免费   21篇
化学   57篇
物理学   1篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   11篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
利用水热合成技术成功制备出一种新型多钒硼氧化合物, 用X射线单晶衍射分析技术对其晶体结构和分子结构进行了确定。结果表明在该化合物中多钒硼氧阴离子具有一个新颖的三明治结构。上下两个结构单元都是由六个VO5四角锥交替地通过顺式和反式共边的方式连接起来构成的一个钒氧三角形结构。中间的结构单元是由BO3平面三角形和BO4四面体以共角的方式相互连接形成的一个折叠型的B18O36(OH)6环。三明治结构中层与层之间通过桥氧相连。一个水分子处于它的核心位置上,与每个VO5四角锥中的钒原子都保持几乎相等的距离。该化合物及其晶体中存在着丰富的化学结构和成键信息,同时也有作为氧化还原反应催化剂的潜能。  相似文献   
2.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好.  相似文献   
3.
采用密度泛函理论、微扰理论和前线分子轨道分析,对酸环境和无酸环境下的2,2,6,6-四甲基哌啶氮氧化物(TEMPO)捕获过氧自由基的机理进行了理论研究.研究结果表明,与B3LYP泛函相比,M06-2x泛函的计算结果更接近实验值,更适合于所研究的体系;在酸环境下,质子化的TEMPO经过质子耦合电子转移和电子转移两个反应过程清除过氧自由基,并获得再生;与之相比,在无酸条件下TEMPO清除过氧自由基的反应过程则较为复杂,包括了烷氧胺的生成、β-氢原子转移、碳中心自由基的解离和TEMPO的再生4个反应步骤.通过能量计算,酸性条件下反应活化能为35.6 kJ/mol,明显低于无酸环境下的96.8 kJ/mol,说明酸性条件更有利于TEMPO清除过氧自由基,并对这一现象的化学本质给予了理论解释.  相似文献   
4.
以N749染料为母体,保留三联吡啶配体(tcterpy)作为辅助配体,利用两齿的N-杂环卡宾-吡啶配体(NHC-py)替代2个硫氰酸(NCS)配体设计了一系列同时含有三齿配体和两齿配体的染料分子1~4.利用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法对染料分子1~4及母体分子N749的几何结构、电子结构和光谱性质进行了系统的理论研究.研究结果表明,该系列分子具有良好的光吸收性能,最低能吸收波长可达到800 nm,吸收跃迁为MLCT/LLCT混合跃迁.  相似文献   
5.
α,β-不饱和酰基取代的噁唑烷酮由于其分子中的β-二酮结构可以与手性金属催化剂形成配合物,使其与1,3-偶极试剂的环加成反应,并具有良好的立体选择性,因而被广泛应用于硝酮的不对称1,3-偶极环加成反应的研究中[1-4]。研究结果表明,具有β-二酮结构的缺电子烯烃与手性金属催化  相似文献   
6.
运用分子对接和分子动力学方法研究二甲基精氨酸二甲胺水解酶-1(DDAH-1)与其抑制剂亚胺基烯丁基-L-鸟氨酸(L-VNIO)和亚胺基丙基-L-鸟氨酸(Me-L-NIO)的相互作用和结合模式,并根据实验得到的结论设计了亚胺基苯乙基-L-鸟氨酸(Ph-L-NIO)抑制剂.结果表明:L-VNIO比Me-L-NIO对DDAH-1的抑制效果更强,这个结果与实验测得L-VNIO和Me-L-NIO对DDAH-1的半抑制浓度IC50值大小一致.Phe75、Asp78、His172、Ser175和Asp268这五个氨基酸残基在三种抑制剂形成的复合物中起到非常重要的作用,从计算结果推断在这三个抑制剂中我们设计得到的Ph-L-NIO对DDAH-1的抑制效果最好.  相似文献   
7.
近年来,聚硅烷导电高分子材料受到广泛重视,主要由于硅是公知的半导体,在电子工业上应用极广泛,另外硅是地球上贮量最丰富的元素,在寻找非碳功能材料时,聚硅烷自然是首选.聚硅烷的主链形成σ电子离域,通过掺杂能使这类材料的电导率在较宽的范围内变化,从而赋予他们非常独特的光化学和光物理性质,可用作导体与半导体、光导体材料、以及非线性光学材料、光致抗蚀剂、电致发光装置中的发光二级管等,有可能成为方兴未艾的信息技术所必需的集成电子器件或集成光子器件中的关键材料之一.同π共轭体系相类似,聚硅烷体系也只有在掺杂引入载流子的情况下才能导电.相比之下,对依赖于σ共轭体系的导电机理研究很少.国际上关于这类高分子的理论研究还处在刚刚起步阶段,只有少部分的理论工作是关于未掺杂聚硅烷体系的基态几何和能带结构的分析,大多集中在σ电子离域的验证上.而对于掺杂聚硅烷的理论工作更是少见报道,仅有少量的关于掺杂对聚硅烷寡聚体极子的几何结构和激发能影响的理论工作.有关掺杂后聚硅烷的电子输运性能研究国内外更是未见文献报道,因此开展这方面的理论研究工作是很必要的.本文运用密度泛函理论并结合非平衡格林函数方法,用ATK软件和Gaussian 03软件分别对未掺杂、电荷掺杂(Si12+)、B原子和P原子掺杂(Si5Bsi6和Si5PSi6)的四种聚硅烷寡聚体进行了传输性质的比较性理论研究.首先,为了更真实的模拟电场情况下的电子的性质,本文应用Gaussian程序在6-31+G(d)基组和BHHLYP泛函下,分别在电场0.0,0.68×108,1.36×108,2.03×108,2.71×108,3.38×108和4.06×108V·m-1下对四种聚硅烷进行了几何结构优化,在优化的几何构型和相同的计算方法基础上进行了TDDFT激发态光谱的计算和自然键轨道NBO的计算.然后对优化后的聚硅烷在ATK程序下用Au(111)-(3×3)电极分别计算了偏压为0.0,0.2,0.4,0.6,0.8,1.0和1.2V下的电子输运性质.计算结果表明,电荷掺杂的聚硅烷Si12+和杂原子掺杂的聚硅烷(Si5BSi6和Si5PSi6)的传输性质有着明显的差异,得到了与实验相一致的结论.即电荷掺杂的聚硅烷由于电子传输通道被破坏,所以它的导电性很差,而Si5BSi6和Si5PSi6则表现出了很好的导电性能,并且杂原子掺杂的聚硅烷还表现出了NDR效应.我们通过传输谱图、MPSH图、激发态图谱、能带和共轭效应对上述现象进行了详细讨论.由此可见,B原子和P原子掺杂的聚硅烷可以作为电子器件的优良材料.  相似文献   
8.
俞志刚  刘波  姜兆华 《有机化学》2009,29(8):1217-1222
在非水溶剂中合成出一种新型席夫碱试剂(H2L): 1-苯基-3-甲基-4-萘乙酰基-吡唑啉酮-5 (PMNAP)缩2-氨基苯并咪唑(2-AB)及其过渡金属铜、铅、镍和钴配合物. 由元素分析、综合滴定和质谱数据推测出配合物的组成为ML•H2O, 通过红外光谱、紫外光谱、热重谱和核磁共振氢谱对配体和配合物进行了结构表征, 同时建立了合成体系的液相色谱分离和质谱鉴定方法, 在线得到了配体共存的三种异构体和目标配合物及其相应的质谱信息. 综合各种分析结果显示: 配体在测试条件下以酮式和烯醇式结构共存, 配位时酮式可能转化为烯醇式结构, 按去质子的方式以吡唑啉酮环羟基和H2O上的两个O原子以及亚胺基上的N原子和苯并咪唑环上的含氢N原子与中心离子成键, 配合物的配位数为4.  相似文献   
9.
建立了SPE/RRLC-MS法定量测定水中除草剂苯噻草胺残留量的方法.固相萃取小柱为SupelcleanTM ENVITM-18 柱(3 mL);采用快速高分离液相色谱系统进行色谱分离;质谱在正离子扫描模式下,选择丰度最高的碎片离子m/z 192为定量离子,m/z 148为定性参比离子,外标法定量.研究结果显示:方法的仪器检出限(LOD)为0.001 mg/L,理论检出限为0.004 μg/L,方法的定量限为0.004 mg/L,线性范围在0.004~0.5 mg/L之间,低、中和高3个浓度点的平均加标回收率为72.1%~97.7%,相对标准偏差(RSD)为3.2%~15%.该方法可用于饮用水和松花江水中苯噻草胺残留量的检测.  相似文献   
10.
本文报道了一种新颖且简单的邻二羟基的保护方法——采用微波法合成异亚丙基缩酮。8种天然多羟基产物在浓硫酸和4?分子筛的催化下与丙酮反应,通过原位中和的方法加入Ba(OH)_2·8H_2O粉末以去除催化剂浓硫酸,再经重结晶得到相应的异亚丙基缩酮。这种制备异亚丙基缩酮的新方法操作简单,采用微波辐射的手段显著缩短了反应时间,同时固体不溶性除水剂4?分子筛的引入可显著提高浓硫酸的脱水效率,降低反应成本,简化实验操作,提高产品的纯度和收率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号